Publications



  • ElasticTok: Adaptive Tokenization for Image and Video
    Wilson Yan, Matei Zaharia, Volodymyr Mnih, Pieter Abbeel, Aleksandra Faust, Hao Liu
    Arxiv, 2024
    [paper, code, project, tl;dr]

  • World Model on Million-Length Video And Language With Blockwise RingAttention
    Hao Liu*, Wilson Yan*, Matei Zaharia, Pieter Abbeel
    Arxiv, 2024
    [paper, code, project, tl;dr]

  • Ring Attention with Blockwise Transformers for Near-Infinite Context
    Hao Liu, Matei Zaharia, Pieter Abbeel
    International Conference on Learning Representations(ICLR), 2024
    [paper, code, media, tl;dr]

  • Blockwise Parallel Transformer for Large Context Models
    Hao Liu, Pieter Abbeel
    Advances in Neural Information Processing Systems(NeurIPS)(Spotlight Presentation), 2023
    [paper, code, tl;dr]

  • Language Quantized AutoEncoders: Towards Unsupervised Text-Image Alignment
    Hao Liu, Wilson Yan, Pieter Abbeel
    Advances in Neural Information Processing Systems(NeurIPS), 2023
    [paper, code, tl;dr]

  • Chain of Hindsight Aligns Language Models with Feedback
    Hao Liu, Carmelo Sferrazza, Pieter Abbeel
    International Conference on Learning Representations(ICLR), 2024
    [paper, code, tl;dr]

  • Emergent Agentic Transformer from Chain of Hindsight Experience
    Hao Liu, Pieter Abbeel
    International Conference on Machine Learning(ICML), 2023
    [paper, tl;dr]

  • Koala: A dialogue model for academic research
    Xinyang Geng*, Arnav Gudibande*, Hao Liu*, Eric Wallace*, Pieter Abbeel†, Sergey Levine†, Dawn Song†.
    Blog, 2023
    [blog]

  • OpenLLaMa, an open reproduction of LLaMA
    Xinyang Geng*, Hao Liu*.
    GitHub, 2023
    [code, tl;dr]

  • Masked Autoencoding for Scalable and Generalizable Decision Making
    Fangchen Liu*, Hao Liu*, Aditya Grover, Pieter Abbeel
    Advances in Neural Information Processing Systems(NeurIPS), 2022
    [paper, code, tl;dr]

  • Don't Change the Algorithm, Change the Data: Exploratory Data for Offline Reinforcement Learning
    Denis Yarats*, David Brandfonbrener*, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric, Lerrel Pinto
    Arxiv, 2022
    [paper, code, tl;dr]

  • Multimodal Masked Autoencoders Learn Transferable Representations
    Xinyang Geng*, Hao Liu*, Lisa Lee, Dale Schuurmans, Sergey Levine, Pieter Abbeel
    ICML Pre-training Workshop (Oral Presentation), 2022.
    [paper, code, tl;dr]

  • Palm up: Playing in the Latent Manifold for Unsupervised Pretraining
    Hao Liu, Tom Zahavy, Volodymyr Mnih, Satinder Singh
    Advances in Neural Information Processing Systems(NeurIPS), 2022
    [paper, tl;dr]

  • CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery
    Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, Pieter Abbeel
    Advances in Neural Information Processing Systems(NeurIPS), 2022
    [paper, project]

  • URLB: Unsupervised Reinforcement Learning Benchmark.
    Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang,
    Lerrel Pinto, Pieter Abbeel
    NeurIPS 2021 Track Datasets and Benchmarks, 2021
    [paper, code, tl;dr]

  • APS: Active Pre-Training with Successor Features
    Hao Liu, Pieter Abbeel
    International Conference on Machine Learning(ICML)(Long Oral Presentation), 2021.
    [paper, code]

  • Behavior From the Void: Unsupervised Active Pre-Training
    Hao Liu, Pieter Abbeel
    Advances in Neural Information Processing Systems(NeurIPS)(Spotlight Presentation), 2021.
    [paper, code, tl;dr]



  • Home